Abstract

Registration of the coordinates of lightning by their optical radiation has already been implemented on geostationary spacecraft in the wavelength range of 777.4 nm. However, the algorithms for processing the registered signals, as well as the volumes of information flows, have not yet been sufficiently studied. The choice of the sensor for the global registration of optical radiation of lightning on board a low-orbit spacecraft is substantiated. The prospects of using photodiodes in the difference-ranging method for determining coordinates are shown.The characteristics of lightning detection using matrices and LEDs have been studied. The prospects of using photodiodes in the differential-range-finding method for determining coordinates are shown. It is shown that the registration of optical lightning radiation on board the spacecraft by photodiodes provides the characteristics of detection and false alarms of a higher quality compared with the use of CCD matrices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.