Abstract

AbstractThe Early to Late Triassic development of a carbonate ramp system in the subtropical belt of the NW Tethys was controlled by the interplay of several global and regional factors: geotectonic setting (slow continuous subsidence on a passive continental margin), antecedent topography (low-gradient relief inherited from preceding depositional regime), climate and oceanography (warm and dry climatic conditions, storm influence), relative sea-level changes (Olenekian to Anisian eustatic rise, middle Anisian to early Carnian sea-level fall), lack of frame-builders (favouring the maintenance of ramp morphology), and carbonate production (abundant formation of lime mud, non-skeletal grains and marine cements, development of diverse biota controlled by biological evolution and environmental conditions). Elevated palaeorelief affected the ramp initialization on a local scale, while autogenic processes largely controlled the formation of peritidal cyclicity during the early stage of ramp retrogradation. Probably fault-driven differential subsidence caused a local distal steepening of the ramp profile in middle–late Anisian time. The generally favourable conditions promoted long-term maintenance of homoclinal ramp morphology and accumulation of carbonate sediments having great maximum thickness (~500 m). Shutdown of the carbonate factory and demise of the ramp system in the early Carnian resulted from relative sea-level fall and subsequent emergence. After a period of subaerial exposure with minor karstification, the deposition of continental quartz arenites suggests the possible effect of the Carnian Pluvial Episode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call