Abstract
Air pollution and dust prevail over many regions that have rapid growth of solar photovoltaic (PV) electricity generation, potentially reducing PV generation. Here we combine solar PV performance modelling with long-term satellite-observation-constrained surface irradiance, aerosol deposition and precipitation rates to provide a global picture of the impact of particulate matter (PM) on PV generation. We consider attenuation caused by both atmospheric PM and PM deposition on panels (soiling) in calculating the overall effect of PM on PV generation, and include precipitation removal of soiling and the benefits of panel cleaning. Our results reveal that, with no cleaning and precipitation-only removal, PV generation in heavily polluted and desert regions is reduced by more than 50% by PM, with soiling accounting for more than two-thirds of the total reduction. Our findings highlight the benefit of cleaning panels in heavily polluted regions with low precipitation and the potential to increase PV generation through air-quality improvements. Air pollution and dust can reduce photovoltaic electricity generation. This study shows that, without cleaning and with precipitation-only removal, particulate matter can reduce photovoltaic generation in polluted and desert regions by more than 50%, with soiling being the major cause of reduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.