Abstract

It is shown that for continuous dynamical systems an analogue of the Poincaré recurrence theorem holds for Ω-limit sets. A similar result is proved for Ω-limit sets of random dynamical systems (RDS) on Polish spaces. This is used to derive that a random set which attracts every (deterministic) compact set has full measure with respect to every invariant probability measure for theRDS. Then we show that a random attractor coincides with the Ω-limit set of a (nonrandom) compact set with probability arbitrarily close to one, and even almost surely in case the base flow is ergodic. This is used to derive uniqueness of attractors, even in case the base flow is not ergodic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.