Abstract

The global proteome response toward recombinant protein production in Escherichia coli BL21 (DE3) grown in complex and defined medium was analyzed. Overproduction of human basic fibroblast growth factor (hFGF-2), a difficult-to-fold protein, led to a reconstruction of the bacterial proteome. For example, heat shock chaperones were highly upregulated, especially when production occurred during fast growth in complex medium. Although heat shock chaperones increased to higher levels in complex medium more hFGF-2 accumulated within inclusion bodies indicating that the capacity to chaperone protein folding was not sufficient for high speed production. In both types of media, cellular proteins from substrate transport systems, central metabolic pathways, and by-product uptake (e.g. acetate) were downregulated. This downregulation was connected to growth inhibition and metabolic perturbations. For example, during production in complex and defined medium acetate reassimilation and glucose uptake, respectively, were severely hampered. Cellular proteins for degradation of less favorable substrates, elimination of reactive oxygen species, and DNA protection were also downregulated in response to hFGF-2 production. The decrease of proteins involved in transport, central metabolic pathways, and general cell protection was more pronounced in the fast producing culture in complex medium than in the slow producing culture in defined medium. In general, production of hFGF-2 seems to interfere with the adaptation process to changing growth conditions, in this case the adaptation from exponential growth to stationary phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call