Abstract

Cellular stress responses often require transcription-based activation of gene expression to promote cellular adaptation. Whether general mechanisms exist for stress-responsive gene downregulation is less clear. A recently defined mechanism enables both up- and downregulation of protein levels for distinct gene sets by the same transcription factor via coordinated induction of canonical mRNAs andlong undecoded transcript isoforms (LUTIs). Weanalyzed parallel gene expression datasets to determine whether this mechanism contributes to the conserved Hac1-driven branch of the unfolded protein response (UPRER), indeed observing Hac1-dependent protein downregulation accompanying the upregulation of ER-related proteins that typifies UPRER activation. Proteins downregulated by Hac1-driven LUTIs include those with electron transport chain (ETC) function. Abrogated ETC function improves the fitness of UPRER-activated cells, suggesting functional importance to this regulation. We conclude that the UPRER drives large-scale proteome remodeling, including coordinated up- and downregulation of distinct protein classes, which is partly mediated by Hac1-induced LUTIs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.