Abstract

Global protein synthesis arrest occurs in Autographa californica nucleopolyhedrovirus (AcNPV)-infected Ld652Y cells at late times postinfection (p.i.). A Lymantria dispar nucleopolyhedrovirus gene, hrf-1, precludes this protein synthesis arrest. We used in vitro translation assays to characterize the translation defect. Cell-free lysates prepared from uninfected Ld652Y cells, AcNPV-infected cells harvested at early times p.i., and cells infected with vAchrf-1, a recombinant AcNPV bearing hrf-1, all supported translation. Lysates prepared from AcNPV-infected Ld652Y cells at late times p.i. did not support translation, but activity was restored by adding small RNA species from mock-, vAchrf-1- (24 or 48 h p.i.), and AcNPV- (6 h p.i.) infected cells. Small RNA species (24 and 48 h p.i.) from AcNPV-infected cells did not rescue translation. Assays of RNA species further fractionated by ion exchange chromatography demonstrated that tRNA rescued translation. Although specific defective tRNA species were not revealed by comparative two-dimensional gel analysis, analysis of 32P-labeled tRNAs showed a reduction in de novo synthesis of small RNA isolated from AcNPV-infected cells compared with mock- and vAchrf-1-infected cells. This study suggests a mechanism of translation arrest involving defective or depleted tRNA species in AcNPV-infected Ld652Y cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.