Abstract

Rhizoctonia solani is the major pathogenic fungi of rice sheath blight. It is responsible for the most serious disease of rice (Oryza sativa L.) and causes significant yield losses in rice-growing countries. Identifying the protein-protein interaction (PPI) maps of R. solani can provide insights into the potential pathogenic mechanisms and assign putative functions to unknown genes. Here, we exploited a PPI map of R. solani anastomosis group 1 IA (AG-1 IA) based on the interolog and domain-domain interaction methods. We constructed a core subset of high-confidence protein networks consisting of 6705 interactions among 1773 proteins. The high quality of the network was revealed by comprehensive methods, including yeast two-hybrid experiments. Pathogenic interaction subnetwork, secreted proteins subnetwork, and mitogen-activated protein kinase (MAPK) cascade subnetwork and their interacting partners were constructed and analyzed. Moreover, to exactly predict the pathogenic factors, the expression levels of the interaction proteins were investigated by analyzing RNA sequences that consisted of samples from the entire infection progress. The PPIs offer an exceptionally rich source of data that can be used to understand the gene functions and biological processes of this serious disease at the system level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.