Abstract

We study global existence problems and asymptotic behaviour of higher-dimensional inhomogeneous spacetimes with a compact Cauchy surface in the Einstein–Maxwell–dilaton (EMD) system. Spacelike TD−2 symmetry is assumed, where D ⩾ 4 is spacetime dimension. The system of the evolution equations of the EMD equations in the areal time coordinate is reduced to a wave map system, and a global existence theorem for the system is shown. As a corollary of this theorem, a global existence theorem in the constant mean curvature time coordinate is obtained. Finally, for vacuum Einstein gravity in arbitrary dimension, we show existence theorems of asymptotically velocity-term-dominated singularities in both cases in which free functions are analytic and smooth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.