Abstract

Global properties of biological model membranes such as, e.g., structure or elasticity, are known to be closely related to their local features. If a membrane active compound interacts with the membrane assembly, the membrane will primarily be affected on the local, molecular level. The local perturbation may than, through some coupling, translate into a global adjustment of the membrane. In order to address this coupling x-ray and neutron diffraction data analysis techniques have been developed that allow accurate monitoring of changes in global properties. This offers new perspectives on molecular membrane features that in combination with complementary techniques, such as differential scanning calorimetry, spectroscopy or dynamic scattering lead to a better understanding of biomimetic membranes. The present article reviews these aspects giving application examples for single- and multicomponent membranes, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.