Abstract

In this paper, we propose a class of virus infection models with multitarget cells and study their global properties. We first study three models with specific forms of incidence rate function, then study a model with a more general nonlinear incidence rate. The basic model is a (2n+1)-dimensional nonlinear ODEs that describes the population dynamics of the virus, n classes of uninfected target cells, and n classes of infected target cells. Model with exposed state and model with saturated infection rate are also studied. For these models, Lyapunov functions are constructed to establish the global asymptotic stability of the uninfected and infected steady states of these models. We have proven that if the basic reproduction number is less than unity then the uninfected steady state is globally asymptotically stable, and if the basic reproduction number is greater than unity then the infected steady state is globally asymptotically stable. For the model with general nonlinear incidence rate, we construct suitable Lyapunov functions and establish the sufficient conditions for the global stability of the uninfected and infected steady states of this model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.