Abstract

The mechanisms that regulate alternative precursor mRNA (pre-mRNA) splicing are largely unknown. Here, we perform an RNAi screen to identify factors required for alternative splicing regulation by RBFOX2, an RNA-binding protein that promotes either exon inclusion or exclusion. Unexpectedly, we find that two mRNA 3' end formation factors, cleavage and polyadenylation specificity factor (CPSF) and SYMPK, are RBFOX2 cofactors for both inclusion and exclusion of internal exons. RBFOX2 interacts with CPSF/SYMPK and recruits it to the pre-mRNA. RBFOX2 and CPSF/SYMPK then function together to regulate binding of the early intron recognition factors U2AF and U1 small nuclear ribonucleoprotein particle (snRNP). Genome-wide analysis reveals that CPSF also mediates alternative splicing of many internal exons in the absence of RBFOX2. Accordingly, we show that CPSF/SYMPK is also a cofactor of NOVA2 and heterologous nuclear ribonucleoprotein A1 (HNRNPA1), RNA-binding proteins that also regulate alternative splicing. Collectively, our results reveal an unanticipated role for mRNA 3' end formation factors in global promotion of alternative splicing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.