Abstract

Global analytic potential energy surfaces for O((3)P) + H(2)O((1)A(1)) collisions, including the OH + OH hydrogen abstraction and H + OOH hydrogen elimination channels, are presented. Ab initio electronic structure calculations were performed at the CASSCF + MP2 level with an O(4s3p2d1f)/H(3s2p) one electron basis set. Approximately 10(5) geometries were used to fit the three lowest triplet adiabatic states corresponding to the triply degenerate O((3)P) + H(2)O((1)A(1)) reactants. Transition state theory rate constant and total cross section calculations using classical trajectories to collision energies up to 120 kcal mol(-1) (∼11 km s(-1) collision velocity) were performed and show good agreement with experimental data. Flux-velocity contour maps are presented at selected energies for H(2)O collisional excitation, OH + OH, and H + OOH channels to further investigate the dynamics, especially the competition and distinct dynamics of the two reactive channels. There are large differences in the contributions of each of the triplet surfaces to the reactive channels, especially at higher energies. The present surfaces should support quantitative modeling of O((3)P) + H(2)O((1)A(1)) collision processes up to ∼150 kcal mol(-1).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call