Abstract

Monolayer graphene at charge neutrality in a quantizing magnetic field is a quantum Hall ferromagnet. Due to the spin and valley (near) degeneracies, there is a plethora of possible ground states. Previous theoretical work, based on a stringent ultra short-range assumption on the symmetry-allowed interactions, predicts a phase diagram with distinct regions of spin-polarized, canted antiferromagnetic, inter-valley coherent, and charge density wave order. While early experiments suggested that the system was in the canted antiferromagnetic phase at a perpendicular field, recent scanning tunneling studies universally find Kekul\'e bond order, and sometimes also charge density wave order. Recently, it was found that if one relaxes the stringent assumption mentioned above, a phase with coexisting canted antiferromagnetic and Kekul\'e order exists in the region of the phase diagram believed to correspond to real samples. In this work, starting from the continuum limit appropriate for experiments, we present the complete phase diagram of $\nu=0$ graphene in the Hartree-Fock approximation, using generic symmetry-allowed interactions, assuming translation invariant ground states up to an intervalley coherence. Allowing for a sublattice potential (valley Zeeman coupling), we find numerous phases with different types of coexisting order. We conclude with a discussion of the physical signatures of the various states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.