Abstract

We calculate the global phase diagram using classical statistical mechanics for an isotropic pair potential that has been previously [Rechtsman et al., Phys. Rev. Lett. 95, 228301 (2005)] shown to produce the low-coordinated two-dimensional honeycomb crystal as the ground-state structure. Low-coordinated crystals are of practical interest because they have desirable photonic band-gap properties. The phase diagram is obtained from Helmholtz free energies calculated using thermodynamic integration and Monte Carlo simulations. Our results show that the honeycomb crystal remains stable in the global phase diagram even after temperature effects are taken fully into account. Other stable phases in the phase diagram are high and low density triangular phases and a fluid phase. We find no evidence of gas-liquid or liquid-liquid phase coexistence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.