Abstract
In this paper, we explore a new approach to synchronization of coupled oscillators. In contrast to the celebrated Kuramoto model, we do not work in polar coordinates and do not consider oscillations of fixed magnitude. We propose a synchronizing feedback based on relative state information and local measurements that induces consensus-like dynamics. We show that, under a mild stability condition, the combination of the synchronizing feedback with a decentralized magnitude control law renders the oscillators’ almost globally asymptotically stable with respect to set points for the phase shift, frequency, and magnitude. We apply these result to rigorously solve an open problem in control of inverter-based ac power systems. In this context, the proposed control strategy can be implemented using purely local information, induces a grid-forming behavior, and ensures that a network of ac power inverters is almost globally asymptotically stable with respect to a prespecified solution of the ac power-flow equations. Moreover, we show that the controller exhibits a droop-like behavior around the standard operating point, thus, making it backward compatible with the existing power system operation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.