Abstract

BackgroundSeasonal influenza viruses undergo unpredictable changes, which may lead to antigenic mismatch between circulating and vaccine strains and to a reduced vaccine effectiveness. A continuously updated knowledge of influenza strain circulation and seasonality is essential to optimize the effectiveness of influenza vaccination campaigns. We described the global epidemiology of influenza between the 2009 A(H1N1)p and the 2020 COVID‐19 pandemic.MethodsInfluenza virological surveillance data were obtained from the WHO‐FluNet database. We determined the median proportion of influenza cases caused by the different influenza virus types, subtypes, and lineages; the typical timing of the epidemic peak; and the median duration of influenza epidemics (applying the annual average percentage method with a 75% threshold).ResultsWe included over 4.6 million influenza cases from 149 countries. The median proportion of influenza cases caused by type A viruses was 75.5%, highest in the Southern hemisphere (81.6%) and lowest in the intertropical belt (73.0%), and ranged across seasons between 60.9% in 2017 and 88.7% in 2018. Epidemic peaks typically occurred during winter months in Northern and Southern hemisphere countries, while much more variability emerged in tropical countries. Influenza epidemics lasted a median of 25 weeks (range 8–42) in countries lying between 30°N and 26°S, and a median of 9 weeks (range 5–25) in countries outside this latitude range.ConclusionsThis work will establish an important baseline to better understand factors that influence seasonal influenza dynamics and how COVID‐19 may have affected seasonal activity and influenza virus types, subtypes, and lineages circulation patterns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call