Abstract

There is considerable debate over the relative importance of dispersal and environmental disturbances (the Moran effect) as causes of spatial synchrony in fluctuations of animal populations. If environmental factors generally exhibit high levels of spatial autocorrelation, they may be playing a more important role in synchronizing animal populations than sometimes recognized. Here I examine this issue by analyzing spatial autocorrelation in annual rainfall and mean annual temperatures from sites throughout the world using the database maintained by the Global Historical Climatology Network. Both annual precipitation and mean annual temperatures exhibit high synchrony declining with distance and are statistically significant over large distance, often on a continental scale. In general, synchrony was slightly higher in annual precipitation at short distances, but greater in mean annual temperatures at long distances. No latitudinal gradient in synchrony of either variable was detected. The high overall synchrony observed in these environmental variables combined with a pattern of decline with distance similar to that observed in many animal populations suggest that the Moran effect can potentially play an important role in driving synchrony in a wide variety of ecological phenomena regardless of scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.