Abstract

Anthropogenic loading of nitrogen to river systems can pose serious health hazards and create critical environmental threats. Quantification of the magnitude and impact of freshwater nitrogen requires identifying key controls of nitrogen dynamics and analyzing both the past and present patterns of nitrogen flows. To tackle this challenge, we adopted a machine learning (ML) approach and built an ML-driven representation that captures spatiotemporal variability in nitrogen concentrations at global scale. Our model uses random forests to regress a large sample of monthly measured stream nitrogen concentrations onto a set of 17 predictors with a spatial resolution of 0.5-degree over the 1990–2013, including observations within the pixel and upstream drivers. The model was validated with data from rivers outside the training dataset and was used to predict nitrogen concentrations in 520 major river basins of the world, including many with scarce or no observations. We predicted that the regions with highest median nitrogen concentrations in their rivers (in 2013) were: United States (Mississippi), Pakistan, Bangladesh, India (Indus, Ganges), China (Yellow, Yangtze, Yongding, Huai), and most of Europe (Rhine, Danube, Vistula, Thames, Trent, Severn). Other major hotspots were the river basins of the Sebou (Morroco), Nakdong (South Korea), Kitakami (Japan), and Egypt's Nile Delta. Our analysis showed that the rate of increase in nitrogen concentration between 1990s and 2000s was greatest in rivers located in eastern China, eastern and central parts of Canada, Baltic states, Pakistan, mainland southeast Asia, and south-eastern Australia. Using a new grouped variable importance measure, we also found that temporality (month of the year and cumulative month count) is the most influential predictor, followed by factors representing hydroclimatic conditions, diffuse nutrient emissions from agriculture, and topographic features. Our model can be further applied to assess strategies designed to reduce nitrogen pollution in freshwater bodies at large spatial scales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.