Abstract
Factors influencing rice (Oryza sativa L.) yield mainly include nitrogen (N) fertilizer, climate and soil properties. However, a comprehensive analysis of the role of climatic factors and soil physical and chemical properties and their interactions in controlling global yield and nitrogen use efficiency (e.g., agronomic efficiency of N (AEN)) of rice is still pending. In this article, we pooled 2293 observations from 363 articles and conducted a global systematic analysis. We found that the global mean yield and AEN were 6791 ± 48.6 kg ha−1 season−1 and 15.6 ± 0.29 kg kg−1, respectively. Rice yield was positively correlated with latitude, N application rate, soil total and available N, and soil organic carbon, but was negatively correlated with mean annual temperature (MAT) and soil bulk density. The response of yield to soil pH followed the parabolic model, with the peak occurring at pH = 6.35. Our analysis indicated that N application rate, soil total N, and MAT were the main factors driving rice yield globally, while precipitation promoted rice yield by enhancing soil total N. N application rate was the most important inhibitor of AEN globally, while soil cation exchange capacity (CEC) was the most important stimulator of AEN. MAT increased AEN through enhancing soil CEC, but precipitation decreased it by decreasing soil CEC. The yield varies with climatic zones, being greater in temperate and continental regions with low MAT than in tropical regions, but the opposite was observed for AEN. The driving factors of yield and AEN were climatic zone specific. Our findings emphasize that soil properties may interact with future changes in temperature to affect rice production. To achieve high AEN in rice fields, the central influence of CEC on AEN should be considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.