Abstract

Understanding patterns and determinants of net primary productivity (NPP) in global grasslands is ongoing challenges, especially for belowground NPP (BNPP) and its fraction (fBNPP). By developing a comprehensive field-based dataset, we revealed that, along with gradients of mean annual precipitation, actual evapotranspiration, and aridity, aboveground NPP (ANPP), BNPP, and total NPP (TNPP) exhibited hump-shaped patterns, whereas fBNPP showed an opposite trend. ANPP and TNPP showed positive correlations with mean annual temperature, but fBNPP was negatively correlated with it. The relationship between BNPP and climatic factors was considerably weak, indicating that BNPP was relatively stable regardless of the climate conditions. We also observed that the sensitivities of ANPP and BNPP to interannual temperature variability and those of BNPP to interannual precipitation fluctuations exhibited large variations among different study sites, and differed from those at the spatial scale. In contrast, the temporal sensitivities of ANPP to interannual precipitation variability were highly similar across all the individual sites and much smaller than those at the spatial scale. Overall, these results highlight that precipitation, temperature and evapotranspiration all play vital roles in shaping ANPP pattern and its partitioning to belowground and that the patterns of BNPP along climatic gradients do not mirror those of the ANPP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call