Abstract
In this paper, a memetic algorithm for global path planning (MAGPP) of mobile robots is proposed. MAGPP is a synergy of genetic algorithm (GA) based global path planning and a local path refinement. Particularly, candidate path solutions are represented as GA individuals and evolved with evolutionary operators. In each GA generation, the local path refinement is applied to the GA individuals to rectify and improve the paths encoded. MAGPP is characterised by a flexible path encoding scheme, which is introduced to encode the obstacles bypassed by a path. Both path length and smoothness are considered as fitness evaluation criteria. MAGPP is tested on simulated maps and compared with other counterpart algorithms. The experimental results demonstrate the efficiency of MAGPP and it is shown to obtain better solutions than the other compared algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.