Abstract

<para xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> Visual servoing consists of steering a robot from an initial to a desired location by exploiting the information provided by visual sensors. This paper deals with the problem of realizing visual servoing for robot manipulators taking into account constraints such as visibility, workspace (that is obstacle avoidance), and joint constraints, while minimizing a cost function such as spanned image area, trajectory length, and curvature. To solve this problem, a new path-planning scheme is proposed. First, a robust object reconstruction is computed from visual measurements which allows one to obtain feasible image trajectories. Second, the rotation path is parameterized through an extension of the Euler parameters that yields an equivalent expression of the rotation matrix as a quadratic function of unconstrained variables, hence, largely simplifying standard parameterizations which involve transcendental functions. Then, polynomials of arbitrary degree are used to complete the parametrization and formulate the desired constraints and costs as a general optimization problem. The optimal trajectory is followed by tracking the image trajectory with an IBVS controller combined with repulsive potential fields in order to fulfill the constraints in real conditions. </para>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.