Abstract
The number and intensity of natural disasters is growing every year, with 394 major events affecting over 268 million people worldwide in the past decade. The objective of this study was to identify whether it is more appropriate to use local or global materials in post-disaster reconstruction projects. Twenty transitional shelters were identified over 11 different locations worldwide, and their environmental, economic, and mechanical/technical performances were compared. The environmental and economic assessments were based on life cycle cost and life cycle assessment. In the mechanical/technical assessments, the relationships between hazard zones and their performances were assessed for earthquakes, wind loads and floods. Sustainability was assessed using a benchmark system that incorporates the results from these three categories. The results show that shelters with high technical performance can be achieved with low price/low environmental impact per functional unit regardless of the type of material used. Local materials withhold higher potential for low environmental impacts and costs and global materials have higher potential to produce better technical performances. Although local constructive systems can provide the best compromise between environmental impacts and cost, their structural design requires more effort.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.