Abstract

Global optimization is necessary in some cases when we want to achieve the best solution or we require a new solution which is better the old one. However global optimization is a hazard problem. Gradient descent method is a well-known technique to find out local optimizer whereas approximation solution approach aims to simplify how to solve the global optimization problem. In order to find out the global optimizer in the most practical way, I propose a so-called descending region (DR) algorithm which is combination of gradient descent method and approximation solution approach. The ideology of DR algorithm is that given a known local minimizer, the better minimizer is searched only in a so-called descending region under such local minimizer. Descending region is begun by a so-called descending point which is the main subject of DR algorithm. Descending point, in turn, is solution of intersection equation (A). Finally, I prove and provide a simpler linear equation system (B) which is derived from (A). So (B) is the most important result of this research because (A) is solved by solving (B) many enough times. In other words, DR algorithm is refined many times so as to produce such (B) for searching for the global optimizer. I propose a so-called simulated Newton – Raphson (SNR) algorithm which is a simulation of Newton – Raphson method to solve (B). The starting point is very important for SNR algorithm to converge. Therefore, I also propose a so-called RTP algorithm, which is refined and probabilistic process, in order to partition solution space and generate random testing points, which aims to estimate the starting point of SNR algorithm. In general, I combine three algorithms such as DR, SNR, and RTP to solve the hazard problem of global optimization. Although the approach is division and conquest methodology in which global optimization is split into local optimization, solving equation, and partitioning, the solution is synthesis in which DR is backbone to connect itself with SNR and RTP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call