Abstract

In design practice it is often that the structural components are selected from among easily available discrete candidates and a number of different candidates used in a structure is restricted to be small. Presented in this paper is a new modeling of the design constraints for obtaining the minimum compliance truss design in which only a limited number of different cross-section sizes are employed. The member cross-sectional areas are considered either discrete design variables that can take only predetermined values or continuous design variables. In both cases it is shown that the compliance minimization problem can be formulated as a mixed-integer second-order cone programming problem. The global optimal solution of this optimization problem is then computed by using an existing solver based on a branch-and-cut algorithm. Numerical experiments are performed to show that the proposed approach is applicable to moderately large-scale problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.