Abstract

We consider the problem of global minimization of rational functions on ** (unconstrained case), and on an open, connected, semi-algebraic subset of **, or the (partial) closure of such a set (constrained case). We show that in the univariate case (n = 1), these problems have exact reformulations as semidefinite programming (SDP) problems, by using reformulations introduced in the PhD thesis of Jibetean [16]. This extends the analogous results by Nesterov [13] for global minimization of univariate polynomials.For the bivariate case (n = 2), we obtain a fully polynomial time approximation scheme (FPTAS) for the unconstrained problem, if an a priori lower bound on the infimum is known, by using results by De Klerk and Pasechnik [1].For the NP-hard multivariate case, we discuss semidefinite programming-based relaxations for obtaining lower bounds on the infimum, by using results by Parrilo [15], and Lasserre [12].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.