Abstract

Global optimization for mining complexes aims to generate a production schedule for the various mines and processing streams that maximizes the economic value of the enterprise as a whole. Aside from the large scale of the optimization models, one of the major challenges associated with optimizing mining complexes is related to the blending and non-linear geo-metallurgical interactions in the processing streams as materials are transformed from bulk material to refined products. This work proposes a new two-stage stochastic global optimization model for the production scheduling of open pit mining complexes with uncertainty. Three combinations of metaheuristics, including simulated annealing, particle swarm optimization and differential evolution, are tested to assess the performance of the solver. Experimental results for a copper-gold mining complex demonstrate that the optimizer is capable of generating designs that reduce the risk of not meeting production targets, have 6.6% higher expected net present value than the deterministic-equivalent design and 22.6% higher net present value than an industry-standard deterministic mine planning software.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call