Abstract

Abstract Bi-level programming problems (BLPPs) arise very often in areas of engineering, transportation control. A key feature of such problems from a mathematical viewpoint is that even for the simplest linear case, a global optimization approach is typically necessary. In this work, we present two multi-parametric programming based algorithms for the solution of integer and mixed-integer bi-level programming problems. The first algorithm addresses the mixed-integer case of the BLPP and employs a reformulation linearization technique (Sherali and Adams, 1990, 1994; Adams and Sherali, 2005) and continuous multi-parametric programming for the solution of the inner problem. The second algorithm addresses the integer case of the BLPP and approaches the inner problem using global multi-parametric mixed-integer programming (Dua et al. 2004). In both algorithms the solution of the inner problem is embedded in the outer problem to form a set of single-level optimization problems that can be solved to global optimality using a global optimization software.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.