Abstract

In this paper a deterministic global optimization algorithm is proposed for locatingthe global minimum of the generalized geometric programming (GGP) problem. By utilizing an exponential variable transformation and some other techniques the initial nonconvex problem (GGP) is reduced to a typical reverse convex programming (RCP). Then a linear relaxation of problem (RCP) is obtained based on the famous arithmetic-geometric mean inequality and the linear upper bound of the reverse constraints inside some hyperrectangle region. The proposed branch and bound algorithm is convergent to the global minimum through the successive refinement of the linear relaxation of the feasible region of the objective function and the solutions of a series of linear optimization problems. And finally the numerical experiment is given to illustrate the feasibility and the robust stability of the present algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.