Abstract

A global optimization algorithm is presented for maximizing the sum of difference of convex functions ratios problem over nonconvex feasible region. This algorithm is based on branch and bound framework. To obtain a difference of convex programming, the considered problem is first reformulated by introducing new variables as few as possible. By using subgradient and convex envelope, the fundamental problem of estimating lower bound in the branch and bound algorithm is transformed into a relaxed linear programming problem which can be solved efficiently. Furthermore, the size of the relaxed linear programming problem does not change during the algorithm search. Lastly, the convergence of the algorithm is analyzed and the numerical results are reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.