Abstract
It is well known that considering a non-Euclidean Minkowski metric in Multidimensional Scaling, either for the distance model or for the loss function, increases the computational problem of local minima considerably. In this paper, we propose an algorithm in which both the loss function and the composition rule can be considered in any Minkowski metric, using a multivariate randomly alternating Simulated Annealing procedure with permutation and translation phases. The algorithm has been implemented in Fortran and tested over classical and simulated data matrices with sizes up to 200 objects. A study has been carried out with some of the common loss functions to determine the most suitable values for the main parameters. The experimental results confirm the theoretical expectation that Simulated Annealing is a suitable strategy to deal by itself with the optimization problems in Multidimensional Scaling, in particular for City-Block, Euclidean and Infinity metrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.