Abstract

To improve the operational efficiency of global optimization in engineering, Kriging model was established to simplify the mathe-matical model for calculations. The architecture of the water-air amphibious aerial vehicle is especially crucial to the whole product, which impacts its performances in many different sides. a new architecture of low-submerged ducted water-air amphibious aerial vehi-cle with double rotor wings is designed on the basis of the studies home and abroad. Both of the system architecture and the dynamic model are established and both of the water-flow and airflow are analyzed with Fluent based on the 3D structure models built by Solidworks software, which mainly aims at the impact factors of body thrust force and lift force. And the CFD simulations of the layout are also accomplished based on the former analysis results as well. Compared with the results from PSO algorithm, kriging model and orthogonal test, the most suitable shape architecture is optimized. Finally, the optimized results were simulated by Fluent. The results show that the Global optimization thought based on the Kriging model and the PSO algorithm significantly improve the lift and drive performance of cross-domain aircraft and computer operational efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.