Abstract

The well-known and established global optimality conditions based on the Lagrangian formulation of an optimization problem are consistent if and only if the duality gap is zero. We develop a set of global optimality conditions that are structurally similar but are consistent for any size of the duality gap. This system characterizes a primal–dual optimal solution by means of primal and dual feasibility, primal Lagrangian ε-optimality, and, in the presence of inequality constraints, a relaxed complementarity condition analogously called δ-complementarity. The total size ε + δ of those two perturbations equals the size of the duality gap at an optimal solution. Further, the characterization is equivalent to a near-saddle point condition which generalizes the classic saddle point characterization of a primal–dual optimal solution in convex programming. The system developed can be used to explain, to a large degree, when and why Lagrangian heuristics for discrete optimization are successful in reaching near-optimal solutions. Further, experiments on a set-covering problem illustrate how the new optimality conditions can be utilized as a foundation for the construction of new Lagrangian heuristics. Finally, we outline possible uses of the optimality conditions in column generation algorithms and in the construction of core problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.