Abstract

Optimal power flow (OPF) over power transmission networks poses challenging large-scale nonlinear optimization problems, which involve a large number of quadratic equality and indefinite quadratic inequality constraints. These computationally intractable constraints are often expressed by linear constraints plus matrix additional rank-one constraints on the outer products of the voltage vectors. The existing convex relaxation technique, which drops the difficult rank-one constraints for tractable computation, cannot yield even a feasible point. We address these computationally difficult problems by an iterative procedure, which generates a sequence of improved points that converges to a rank-one solution. Each iteration calls a semi-definite program. Intensive simulations for the OPF problems over networks with a few thousands of buses are provided to demonstrate the efficiency of our approach. The suboptimal values of the OPF problems found by our computational procedure turn out to be the global optimal value with computational tolerance less than 0.01%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.