Abstract

The run-up catalogs of two global tsunami databases maintained by the NCEI/WDC NOAA and NTL/ICMMG SD RAS are examined to compile the list of annual maximum runups observed or measured in the oceanic, marine and inland basins during the last 120 years (from 1900 to 2019). All the retrieved annual maximum runups were divided into four groups according to four main types of tsunami sources (seismogenic, landslide-generated, volcanic, and meteorological). Their distribution over the type of sources shows that of the 120 maximum runups only 78 (65%) resulted from seismogenic sources, while the remaining 42 runups were divided between landslide-generated (19%), volcanic (8%), and meteorological (7.5%) sources. The analysis of geographical distribution of source locations demonstrates that tsunamis are not exclusively a marine hazard—over 15% of all maximum runups were observed in coastal and inland water basins (narrow bays, fiords, lakes, and rivers). Temporal distribution of the collected runups shows that annual occurrence of large tsunamis was more or less stable throughout the twentieth century and only demonstrates some increase during the last 27 years (since 1992) when the practice of post-event surveys of all damaging tsunamis was implemented. This paper also outlines the existing problems with data compilation, cataloguing, and distribution, and discusses incompleteness of runup and wave-form data for a considerable number of non-damaging tsunamis, even those resulting from the strong (magnitude higher than 7.5) submarine earthquakes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call