Abstract

I study a class of global, causal geodesically complete solutions to the spherically symmetric Einstein scalar field (SSESF) system . Extending results of Luk-Oh (Quantitative Decay Rates for Dispersive Solutions to the Einstein-Scalar Field System in Spherical Symmetry, arXiv:1402.2984), Luk-Oh-Yang (Solutions to the Einstein-Scalar-Field System in Spherical Symmetry with Large Bounded Variation Norms, arXiv:1605.03893), I provide new bounds controlling higher derivatives of both the metric components of the solution and the scalar field itself for large data solutions to SSESF. Moreover, by constructing a particular set of generalized wave-coordinates, I show that, assuming sufficient regularity of the data, these solutions are globally non-linearly stable to non-spherically symmetric perturbations by recent results of Luk and Oh. In particular, I demonstrate the existence of a large collection of non-trivial examples of large data, globally nonlinearly stable, dispersive solutions to the Einstein scalar field system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.