Abstract
Consider the Cauchy problem of incompressible Navier–Stokes equations in $$\mathbb {R}^3$$ with uniformly locally square integrable initial data. If the square integral of the initial datum on a ball vanishes as the ball goes to infinity, the existence of a time-global weak solution has been known. However, such data do not include constants, and the only known global solutions for non-decaying data are either for perturbations of constants, or when the velocity gradients are in $$L^p$$ with finite p. In this paper, we construct global weak solutions for non-decaying initial data whose local oscillations decay, no matter how slowly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.