Abstract

Abstract During the past decades large-scale models have been developed to simulate global and continental terrestrial water cycles. It is an open question whether these models are suitable to capture hydrological drought, in terms of runoff, on a global scale. A multimodel ensemble analysis was carried out to evaluate if 10 such large-scale models agree on major drought events during the second half of the twentieth century. Time series of monthly precipitation, monthly total runoff from 10 global hydrological models, and their ensemble median have been used to identify drought. Temporal development of area in drought for various regions across the globe was investigated. Model spread was largest in regions with low runoff and smallest in regions with high runoff. In vast regions, correlation between runoff drought derived from the models and meteorological drought was found to be low. This indicated that models add information to the signal derived from precipitation and that runoff drought cannot directly be determined from precipitation data alone in global drought analyses with a constant aggregation period. However, duration and spatial extent of major drought events differed between models. Some models showed a fast runoff response to rainfall, which led to deviations from reported drought events in slowly responding hydrological systems. By using an ensemble of models, this fast runoff response was partly overcome and delay in drought propagating from meteorological drought to drought in runoff was included. Finally, an ensemble of models also allows for consideration of uncertainty associated with individual model structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.