Abstract

Ionospheric sporadic-E (Es) activity and global morphology were studied using the 50 Hz signal-to-noise ratio amplitude and excess phase measurements from the FormoSat-3/Constellation Observing System for Meteorology, Ionosphere and Climate (FS3/COSMIC) GPS radio occultation (RO) observations. The results are presented for data collected during the last sunspot cycle from mid-2006 to the end of 2017. The FS3/COSMIC generally performed more than 1000 complete E-region GPS RO observations per day, which were used to retrieve normalized L1-band amplitude standard deviation (SDL1) and relative electron density (Ne) profiles successfully. More or less 31% of those observations were identified as Es events based on SDL1 and peak SDL1 altitude criteria. We found that the peak Es-event i values are approximately proportional to the logarithms of the corresponding peak Ne differences. Five major geographical zones were identified, in which the seasonal and diurnal Es occurrence patterns are markedly different. These five zones include the geomagnetic equatorial zone (− 5° < magnetic latitude (ML) < 5°), two extended geomagnetic mid-latitude zones (15° < ML < 55°, and − 55° < ML < − 15°), and two auroral zones (70° < ML, and ML < − 70°). The Es climatology, namely its variations with each identified zone, altitude, season, and local time has been documented.

Highlights

  • Sporadic E (Es) layers are ionization enhancements in the ionospheric E region at altitudes usually between 90 and 120 km (Whitehead 1970, 1989; Kelley 2009; Haldoupis 2011)

  • We investigated the global morphology of ionospheric Es events using the 50 Hz amplitude and excess phase measurements from the FS3/COSMIC mission

  • A number of Es morphology properties are presented, and, as discussed, some of those were obtained from earlier investigations using GPS radio occultation (RO) observations

Read more

Summary

Introduction

Sporadic E (Es) layers are ionization enhancements in the ionospheric E region at altitudes usually between 90 and 120 km (Whitehead 1970, 1989; Kelley 2009; Haldoupis 2011).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call