Abstract

Iron (Fe) is an essential element for phytoplankton. The majority of iron is transported from arid and semiarid regions to the open ocean, but it is mainly in an insoluble form. Since most aquatic organisms can take up iron only in the dissolved form, aerosol iron solubility is a key factor that can influence the air‐sea CO2 fluxes and thus climate. Field observations have shown relatively high iron solubility in aerosols influenced by combustion sources, but specific emissions sources and their contributions to deposition fluxes largely remain uncertain. Here a global chemical transport model was used to investigate the effect of aerosol emissions from ship plumes on iron solubility in particles from the combustion and dust sources. The model results reveal that the oil combustion from shipping mainly contributes to high iron solubility (>10%) at low iron loading (1–110 ng m–3) observed over the high‐latitude North Atlantic Ocean, rather than the other combustion sources from continental industrialized regions. Due to continuing growth in global shipping and no regulations regarding particles emissions over the open ocean, the input of potentially bioavailable iron from ship plumes is likely to increase during the next century. The model results suggest that deposition of soluble iron from ships in 2100 contributes 30–60% of the soluble iron deposition over the high‐latitude North Atlantic and North Pacific.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call