Abstract

The global modeling of both line positions and intensities of the acetylene molecule in the 50–9900cm−1 region has been performed using the effective operators approach. The parameters of the polyad model of effective Hamiltonian have been fitted to the line positions collected from the literature. The used polyad model of effective Hamiltonian takes into account the centrifugal distortion, rotational and vibrational ℓ-doubling terms and both anharmonic and Coriolis resonance interaction operators arising due to the approximate relations between the harmonic frequencies: ω1≈ω3≈5ω4≈5ω5 and ω2≈3ω4≈3ω5. The dimensionless weighted standard deviation of the fit is 2.8. The fitted set of 237 effective Hamiltonian parameters allowed reproducing 24,991 measured line positions of 494 bands with a root mean squares deviation 0.0037cm−1.The eigenfunctions of the effective Hamiltonian corresponding to the fitted set of parameters were used to fit the observed line intensities collected from the literature for 15 series of transitions: ΔP = 0-13,15, where P=5V1+5V3 +3V2+V4+V5 is the polyad number (Vi are the principal vibrational quantum numbers). The fitted sets of the effective dipole moment parameters reproduce the observed line intensities within their experimental uncertainties 2–20%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call