Abstract

Changes in plant production, structure, and tissue composition are primary drivers for terrestrial biogeochemistry under future environmental conditions. Consequently, there is a need for process-oriented assessment of the potential global importance of vegetation controls over extended periods of C and N sequestration in terrestrial ecosystems. In this study, plant litter quality (lignin content) and carbon allocation to woody tissues are used as surrogates for testing the hypothetical effects of vegetation change on C and N cycles. We tested the CASA (Carnegie-Ames-Stanford approach) biosphere model, which uses global gridded (1°) satellite imagery on a monthly time interval to simulate seasonal patterns in net ecosystem carbon balance and near steady-state C/N storage in detritus and soils. Under contemporary “reference” settings, combined organic matter storage (litter plus surface soil to c. 30 cm depth) for C and N is estimated highest in tropical and boreal forest ecosystem zones, and in cultivated ecosystems. The worldwide C:N ratio (by weight) for standing litter plus surface soil organic matter (SOM) is estimated at 23. About 14% of the projected global pool of 1327 Pg (1015 g) soil C resides in “modern” form, in the sense that this proportion is in near-steady state exchange with plant production and decomposition on time scales of several decades. Likewise, about 12% of the projected global pool of 104 Pg soil N is in modern form. Sensitivity tests treated litter quality and allocation effects independently from other direct effects of changes in climate, atmospheric CO2 levels, and primary production. For forested ecosystems, the model predicts that a hypothetical 50% decrease in litter lignin concentration would result in a long-term net loss of about 10% C from surface litter and soil organic matter pools. A 50% decrease in C allocation to woody tissues would invoke approximately the same net loss of C as a 50% decrease in litter lignin. With respect to nitrogen, the 50% downward adjustment in litter allocation to woody tissues may increase both the estimated net N mineralization rates and SLOW N pool by approximately 9% on a global basis. This pattern is consistent with an overall increase in N available for cycling, which is affected by the fraction of relatively N-poor to N-rich litter inputs. For comparison to the effects of these surrogate changes in vegetation tissue composition, model response to a globally uniform increase in surface air temperature of 1 °C is a net loss of 5% C from litter and SOM pools.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call