Abstract
A global minimum and a heap of low-lying isomers with planar tetracoordinate carbon (ptC) are identified in the CAl3MgH2- system by computational quantum chemical investigations. The nature of the chemical bonding in the global minimum ptC isomer is examined using the conceptual quantum chemical tools. The atoms in molecule (AIM) analysis reveals that the global minimum isomer possesses a ptC geometry. Additionally, the adaptive natural density partitioning (AdNDP), electron localization function (ELF), and nucleus-independent chemical shifts (NICS) analysis corroborate the presence of delocalization in the ptC isomer. The delocalization of electron density in the global minimum ptC isomer contributes to attaining structural stability. The results also suggest that the bridging hydrogen plays a crucial role in stabilizing the ptC system. Furthermore, the ab initio molecular dynamics study supports the structural stability of the ptC isomer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.