Abstract
In this paper, we present necessary as well as sufficient conditions for a given feasible point to be a global minimizer of the difference of quadratic and convex functions subject to bounds on the variables. We show that the necessary conditions become necessary and sufficient for global minimizers in the case of a weighted sum of squares minimization problems. We obtain sufficient conditions for global optimality by first constructing quadratic underestimators and then by characterizing global minimizers of the underestimators. We also derive global optimality conditions for the minimization of the difference of quadratic and convex functions over binary constraints. We discuss several numerical examples to illustrate the significance of the optimality conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.