Abstract

Abstract. Resilient, productive soils are necessary to sustainably intensify agriculture to increase yields while minimizing environmental harm. To conserve and regenerate productive soils, the need to maintain and build soil organic matter (SOM) has received considerable attention. Although SOM is considered key to soil health, its relationship with yield is contested because of local-scale differences in soils, climate, and farming systems. There is a need to quantify this relationship to set a general framework for how soil management could potentially contribute to the goals of sustainable intensification. We developed a quantitative model exploring how SOM relates to crop yield potential of maize and wheat in light of co-varying factors of management, soil type, and climate. We found that yields of these two crops are on average greater with higher concentrations of SOC (soil organic carbon). However, yield increases level off at ∼2 % SOC. Nevertheless, approximately two-thirds of the world's cultivated maize and wheat lands currently have SOC contents of less than 2 %. Using this regression relationship developed from published empirical data, we then estimated how an increase in SOC concentrations up to regionally specific targets could potentially help reduce reliance on nitrogen (N) fertilizer and help close global yield gaps. Potential N fertilizer reductions associated with increasing SOC amount to 7 % and 5 % of global N fertilizer inputs across maize and wheat fields, respectively. Potential yield increases of 10±11 % (mean ± SD) for maize and 23±37 % for wheat amount to 32 % of the projected yield gap for maize and 60 % of that for wheat. Our analysis provides a global-level prediction for relating SOC to crop yields. Further work employing similar approaches to regional and local data, coupled with experimental work to disentangle causative effects of SOC on yield and vice versa, is needed to provide practical prescriptions to incentivize soil management for sustainable intensification.

Highlights

  • The pressure to increase crop production has resulted in the expansion of land area dedicated to agriculture and the intensification of cropland management through practices such as irrigation and fertilization

  • We developed a quantitative model exploring how soil organic matter (SOM) relates to crop yield potential in light of co-varying factors of management, soil type, and climate

  • Feasibility aside, our results suggest that building SOM in agricultural lands may supply enough plant available nutrients to sustain crop yields while drastically cutting back on N fertilizer inputs

Read more

Summary

Introduction

The pressure to increase crop production has resulted in the expansion of land area dedicated to agriculture and the intensification of cropland management through practices such as irrigation and fertilization. These practices have led to degradation of land and waters, prompting sustainable intensification initiatives to increase yields on existing farmland while decreasing the environmental impact of agriculture (Foley et al, 2011; Godfray et al, 2010; Mueller et al, 2012). Rebuilding SOM in agricultural lands holds the promise of improving soil fertility, as SOM affects many properties of soils, including their ability to retain water and nutrients, to provide structure promoting efficient drainage and aeration, and to minimize loss of topsoil via erosion (Reeves et al, 1997; Robertson et al, 2014).

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call