Abstract

In this work, a meta-heuristic optimization based method, known as the Firefly Algorithm (FA), to achieve the maximum power point (MPP) of a solar photo-voltaic (PV) system under partial shading conditions (PSC) is investigated. The Firefly Algorithm outperforms other techniques, such as the Perturb & Observe (P&O) method, proportional integral derivative (PID, and particle swarm optimization (PSO). These results show that the Firefly Algorithm (FA) tracks the MPP accurately compared with other above mentioned techniques. The PV system performance parameters i.e., convergence and tracking speed, is improved compared to conventional MPP tracking (MPPT) algorithms. It accurately tracks the various situations that outperform other methods. The proposed method significantly increased tracking efficiency and maximized the amount of energy recovered from PV arrays. Results show that FA exhibits high tracking efficiency (>99%) and less convergence time (<0.05 s) under PSCs with less power oscillations. All of these methods have been validated in Matlab simulation software.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.