Abstract

The UTAs (UTilité Additives) type methods for constructing nondecreasing additive utility functions were first proposed by Jacquet-Lagrèze and Siskos in 1982 for handling decision problems of multicriteria ranking. In this article, by UTA functions, we mean functions which are constructed by the UTA type methods. Our purpose is to propose an algorithm for globally maximizing UTA functions of a class of linear/convex multiple objective programming problems. The algorithm is established based on a branch and bound scheme, in which the branching procedure is performed by a so-called I-rectangular bisection in the objective (outcome) space, and the bounding procedure by some convex or linear programs. Preliminary computational experiments show that this algorithm can work well for the case where the number of objective functions in the multiple objective optimization problem under consideration is much smaller than the number of variables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.