Abstract

The existence of global nonnegative martingale solutions to a stochastic cross-diffusion system for an arbitrary but finite number of interacting population species is shown. The random influence of the environment is modeled by a multiplicative noise term. The diffusion matrix is generally neither symmetric nor positive definite, but it possesses a quadratic entropy structure. This structure allows us to work in a Hilbert space framework and to apply a stochastic Galerkin method. The existence proof is based on energy-type estimates, the tightness criterion of Brzeźniak and co-workers, and Jakubowski’s generalization of the Skorokhod theorem. The nonnegativity is proved by an extension of Stampacchia’s truncation method due to Chekroun, Park, and Temam.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.