Abstract

AbstractOver arid areas, observations of brightness temperatures by passive microwave radiometers are affected by the variation of the emitting depth with wavelengths. When this variation is unaccounted for, it limits the assimilation of passive microwaves over deserts in Numerical Weather Prediction models and it causes large errors in passive microwave retrievals of land surface temperatures. The emitting depths, along with the corresponding emissivities, are estimated from 10 to 89 GHz, using the non‐Sun‐synchronous observations of the Global Precipitation Mission Microwave Imager to reconstruct the monthly diurnal cycle of brightness temperature. The soil temperature profile is modeled using a two‐term Fourier decomposition based on the ERA5 surface temperature. The combination of the observation and the modeled temperature allows for an estimation of the microwave effective emitting depth. The emitting depth is estimated to be up to 25 cm at 36 GHz, resulting in large differences between the surface temperature and the effective emitting temperature. The variation of emitting depth with frequency is parameterized, and a companion data set provides the necessary parameters to calculate the emitting depth for arid areas between 10 and 89 GHz, globally. The benefit of this parameterization is quantified, with an application to the modeling of observations from the Special Sensor Microwave Imager Sounder over arid areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.